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Аннотация. При производстве нефтегазового оборудования правильный выбор 

скорости резания в процессе высокоточной токарной обработки в решающей степени 

определяет качество и эффективность процесса. Скорость резания влияет не только на 

шероховатость поверхности, но и на срок службы инструмента, стабильность режущих сил и 

снижение производственных затрат. Применение традиционных эмпирических формул 

имеет ограничения в описании сложных нелинейных зависимостей.  

В данной статье предлагается подход на основе искусственных нейронных сетей для 

оптимизации скорости резания. В ходе исследования был разработан экспериментальный 

план, соответствующий реальным производственным условиям, и собраны данные по 

параметрам шероховатости поверхности (Ra), режущим силам (Fc, Ff) и износу инструмента 

(VB). Полученные данные были обработаны моделью искусственной нейронной сети, 

проведена многокритериальная оптимизация, и на основе компромисса Парето определены 

стабильные рабочие окна. Результаты показали, что искусственные нейронные сети дают 

более точные прогнозы по сравнению с классическими регрессионными моделями и 

повышают надежность процесса.  

Недостатки, выявленные в существующей литературе — ориентация только на один 

критерий, ограниченные возможности переноса моделей и нехватка тестов надежности — 

были частично устранены в данном исследовании. Таким образом, предложенный подход 

представляет как теоретически, так и практически значимые результаты для выбора 

оптимальной скорости резания в производстве.  

Ключевые слова: токарная обработка, скорость резания, искусственная нейронная 

сеть, шероховатость поверхности, режущая сила, износ инструмента, многокритериальная 

оптимизация. 

 

Введениe: В современной производственной промышленности нефтегазового 

оборудования требования к точности и стабильности становятся всё более строгими, что 

особенно ясно проявляется при обработке трубчатых, толстостенных и высокопрочных 

стальных деталей. Обработка внутренней поверхности таких деталей, напрмер нефтяного 

насосного оборудования требует высокой технологической точности, гладкого качества 

поверхности и длительного срока службы. Токарная обработка является одним из наиболее 

часто применяемых методов производства подобных деталей, однако успех процесса в 

значительной мере зависит от правильного выбора таких основных параметров, как скорость 

резания. Скорость резания оказывает прямое влияние на тепло, возникающее в инструменте 

и заготовке, на силы резания, устойчивость вибраций и шероховатость поверхности. 

В традиционных подходах применяются эмпирические формулы, предоставленные 

производителями инструмента, или классические уравнения Тейлора. Например, формула 

стойкости инструмента Тейлора (VTⁿ = C) долгое время считалась надёжной для 

прогнозирования износа инструмента. Однако в современных условиях использование 

различных легированных сталей, режущих инструментов с PVD- и CVD-покрытиями, а 
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также переменных систем охлаждающе-смазочных материалов оказывает многочисленные 

нелинейные воздействия на процесс. В этих условиях применение классических формул 

часто не даёт достаточно точных результатов [1]. 

В литературе проведено множество исследований по данной теме, и в обзоре, 

посвящённом прогнозированию шероховатости поверхности, отмечено, что традиционные 

статистические модели эффективны только в ограниченных условиях, а для моделирования 

сложных процессов более целесообразно использовать методы искусственного интеллекта. В 

исследованиях, посвящённых прогнозированию шероховатости поверхности при токарной 

обработке с использованием искусственных нейронных сетей, было показано, что 

искусственные нейронные сети обеспечивают более высокую точность по сравнению с 

регрессионными моделями [2-5]. 

При изучении применения методов многокритериальной оптимизации к процессам 

обработки было установлено, что одновременная оптимизация шероховатости поверхности, 

сил резания и энергопотребления значительно повышает эффективность производства [6]. В 

исследованиях, посвящённых влиянию параметров режимов резания на износ инструмента, 

также было установлено, что модели искусственного интеллекта дают более точные 

прогнозы [7, 8]. 

Общий анализ существующих работ показывает, что большинство исследований 

сосредоточено на одном критерии — например, только на шероховатости поверхности, — 

тогда как другие важные показатели, такие как срок службы инструмента и силы резания, 

часто отходят на второй план. Между тем в реальных производственных условиях важным 

является не только получение гладкой поверхности, но и увеличение срока службы 

инструмента, а также обеспечение стабильности процесса. Кроме того, в большинстве работ 

литературы методы искусственного интеллекта обладают низкой объяснительной 

способностью и ограниченными возможностями применения к различным комбинациям 

материалов и инструментов. 

Для устранения этих пробелов в представленном исследовании применяется подход, 

основанный на использовании искусственных нейронных сетей для оптимизации скорости 

резания при токарной обработке. Здесь учитываются не только шероховатость поверхности, 

но также силы резания и срок службы инструмента. Таким образом, многокритериальный 

оптимизационный подход позволяет технологу выбирать сбалансированные и надёжные 

параметры. Применение данного подхода в промышленных условиях может реально 

способствовать повышению качества продукции, снижению производственных затрат и 

обеспечению стабильности процесса. 

Материалы и методы исследования. В исследовательской работе для оптимизации 

скорости резания при токарной обработке толстостенных деталей были применены как 

экспериментальный подход, так и моделирование на основе искусственной нейронной сети.  

В условиях лабораторной среды, приближенной к производственным условиям, в 

качестве заготовки была выбрана трубчатая деталь, изготовленная из высокопрочной 

закаленной стали, в качестве инструмента использовался резец с пластиной типа CNMG из 

твердого сплава с PVD-покрытием.  

При обработке применялась охлаждающе-смазочная эмульсионная смесь. Основные 

параметры режима резания изменялись в пределах: скорость резания (50–200 м/мин), подача 

(0,1–0,3 мм/об) и глубина резания (0,5–2 мм).  

Выходными показателями являлись шероховатость поверхности (Ra, мкм), силы 

резания (Fc, Ff) и износ инструмента по задней поверхности (VB, мм). 

Эксперименты проводились систематически, диапазон изменения параметров 

выбирался планомерно. Такой подход позволил оценить как основные, так и второстепенные 

эффекты, а также взаимосвязи между параметрами. В каждом сочетании испытания 

повторялись, шероховатость поверхности измерялась профилометром, силы резания 

фиксировались с помощью трехкомпонентного динамометра, износ инструмента 

определялся методом оптических измерений под микроскопом. 
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Полученные результаты на первоначальном этапе проверялись с помощью 

классической регрессионной модели. С этой целью была построена полиномиальная модель 

второго порядка: 

 

𝑌 = 𝛽0 + 𝛽1𝑣 + 𝛽2𝑓 + 𝛽3𝑎𝑝 + 𝛽12𝑣𝑓 + 𝛽13𝑣𝑎𝑝 + 𝛽23𝑓𝑎𝑝 + 𝛽11𝑣2 + 𝛽22𝑓2 + 𝛽33𝑎𝑝
2 + 𝜀   (1) 

 

где Y – выходной показатель (Ra, Fc или VB), v, f, ap – соответственно скорость 

резания, подача и глубина резания, βᵢ – коэффициенты модели, ε – случайная ошибка.  

Хотя данная модель в целом отражала влияние параметров, результаты показали, что 

многочисленные взаимосвязи и нелинейные зависимости ограничивают точность 

регрессионного подхода. 

Для более точного прогноза была построена модель на основе искусственной 

нейронной сети представленная на рис. 1. Многослойный персептрон включал три входных 

нейрона (v, f, ap), два скрытых слоя (16 и 32 нейрона, функция активации ReLU) и три 

выходных нейрона (Ra, Fc, VB). 

 

 
Рисунок 1 - Архитектурная диаграмма искусственной нейронной сети. 

 

Обучение модели осуществлялось с использованием оптимизатора Adam, при этом 

функция потерь была принята в виде многокритериальной средней квадратичной ошибки: 

 

𝐿 =  𝑤𝑅𝑎 ∙ 𝑀𝑆𝐸(𝑅𝑎, 𝑅𝑎̂) + 𝑤𝐹𝑐
∙ 𝑀𝑆𝐸(𝐹𝑐 , 𝐹𝑐̂) + 𝑤𝑉𝐵 ∙ 𝑀𝑆𝐸(𝑉𝐵, 𝑉𝐵̂)                                       (2) 

 

где 𝑤𝑅𝑎, 𝑤𝐹𝑐
, 𝑤𝑉𝐵  определяются в соответствии с приоритетами производства.  

Точность модели оценивалась методом 5-кратной перекрестной проверки, а 

устойчивость параметров к вариациям проверялась с помощью моделирования Монте-Карло. 

На этапе оптимизации в качестве целевой функции было принято одновременное 

минимизирование шероховатости поверхности, силы резания и износа инструмента: 

 

min
𝑣,𝑓,𝑎𝑝

(𝑅𝑎(𝑣, 𝑓, 𝑎𝑝), 𝐹𝑐(𝑣, 𝑓, 𝑎𝑝), 𝑉𝐵(𝑣, 𝑓, 𝑎𝑝))                                                                      (3) 

 

При этом с учетом технических условий были наложены следующие ограничения: 

 

𝑅𝑎 ≤ 𝑅𝑎𝑚𝑖𝑛, 𝑉𝐵 ≤ 𝑉𝐵𝑚𝑖𝑛, 𝐹𝑐 ≤ 𝐹𝑙𝑖𝑚                                                                                        (4) 
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Оптимизация проводилась на основе подхода Парето, рис. 2, в результате чего было 

получено множество компромиссных решений. Выбранные оптимальные диапазоны были 

определены таким образом, чтобы удовлетворять как техническим, так и экономическим 

требованиям производства. 

 

 
Рисунок 2 - Фронт Парето в многокритериальной оптимизации. 

 

Серые точки показывают возможные решения, а красные точки отражают 

компромиссные результаты как с точки зрения шероховатости поверхности (Ra), так и 

износа инструмента (VB). Точки, расположенные вдоль красной пунктирной линии, 

указывают на наиболее оптимальные рабочие окна, из которых технолог может сделать 

выбор. 

Для повышения интерпретируемости данных был применен анализ SHAP, который 

позволил оценить степень влияния признаков на результаты. Это дало технологу 

возможность понять не только итоговый результат, но и механизм взаимного воздействия 

параметров. 

Сравнивались значения, полученные в результате экспериментов, и прогнозы, 

сделанные моделью искусственной нейронной сети. Результаты показали, что модель 

демонстрирует высокое соответствие с реальными измерениями. Например, при скорости 

резания 60 м/мин шероховатость поверхности (Ra) экспериментально составила 2,1 мкм, 

прогнозируемая – 2,0 мкм. Одновременно износ инструмента (VB) был зафиксирован как 

0,05 мм (измеренный) и 0,048 мм (прогнозируемый). При скорости 100 м/мин Ra составила 

1,2 мкм (измеренный) и 1,1 мкм (прогнозируемый), а VB – 0,10 мм (измеренный) и 0,11 мм 

(прогнозируемый). В оптимальном интервале, определенном на уровне 120 м/мин, 

показатель Ra составил 0,9 мкм (измеренный) и 0,95 мкм (прогнозируемый), а VB – 0,14 мм 

(измеренный) и 0,13 мм (прогнозируемый), что дало близкие результаты. При более высоких 

скоростях (например, 160 м/мин и выше) наблюдался повторный рост значений Ra из-за 

тепловых эффектов, а также ускоренный рост износа инструмента. 

Эти сравнения показывают, что модель искусственной нейронной сети способна 

точно отслеживать изменения, происходящие в реальном процессе, и обладает значительно 

более высокой точностью прогнозирования по сравнению с традиционными регрессионными 

подходами. Таким образом, модель может использоваться как надежный инструмент для 

сбалансированной оптимизации как качества поверхности, так и срока службы инструмента. 
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Цель программы, созданной на языке программирования C#, заключается в 

прогнозировании шероховатости поверхности (Ra), силы резания (Fc) и износа инструмента 

(VB) одновременно на основе входных параметров: скорость резания (V), подача (f) и 

глубина резания (ap). Прогнозирование выполняется с использованием многослойного 

перцептрона (MLP); обучение проводится с применением оптимизатора Adam; функция 

потерь формулируется как взвешенная среднеквадратичная ошибка (Weighted-MSE), что 

позволяет назначать различные веса выходным параметрам в зависимости от 

технологических приоритетов (например, сохранение Ra и VB). На основе полученных 

прогнозов проводится простая фильтрация Парето, в результате которой выбирается 

множество недоминируемых решений с точки зрения (Ra, VB). 

Общий результат работы программы можно представить следующим образом. 
ANN for Turning: Predict [Ra, Fc, VB] from [v, f, ap] with Adam 

optimizer. 

Epoch  100: loss~0.33  RMSE(train)=0.30  RMSE(test)=0.34 

Epoch  200: loss~0.18  RMSE(train)=0.22  RMSE(test)=0.27 

Epoch  300: loss~0.13  RMSE(train)=0.19  RMSE(test)=0.23 

Epoch  400: loss~0.10  RMSE(train)=0.17  RMSE(test)=0.21 

Epoch  500: loss~0.09  RMSE(train)=0.15  RMSE(test)=0.20 

Epoch  600: loss~0.08  RMSE(train)=0.14  RMSE(test)=0.19 

Epoch  700: loss~0.07  RMSE(train)=0.14  RMSE(test)=0.18 

Epoch  800: loss~0.07  RMSE(train)=0.13  RMSE(test)=0.18 

 

=== One test sample (denormalized) === 

Pred: Ra=1.10 µm, Fc=232.1 N, VB=0.182 mm 

True: Ra=1.10 µm, Fc=235.0 N, VB=0.180 mm 

=== Pareto-like candidates (minimize Ra & VB) === 

v= 100 m/min, f=0.12 mm/rev, ap=0.6 mm  ->  Ra~1.080 µm, VB~0.120 

mm 

v= 115 m/min, f=0.12 mm/rev, ap=0.6 mm  ->  Ra~0.980 µm, VB~0.135 

mm 

v= 115 m/min, f=0.16 mm/rev, ap=0.6 mm  ->  Ra~1.040 µm, VB~0.130 

mm 

v= 130 m/min, f=0.12 mm/rev, ap=0.9 mm  ->  Ra~1.070 µm, VB~0.155 

mm 

... 

Done. 

В данном отрывке (i) уменьшение RMSE по эпохам отражает стабильность обучения, 

(ii) высокая степень совпадения прогноза и фактических данных на тестовом примере 

подтверждает точность модели, (iii) а кандидаты, подобные Парето, предоставляют 

практическую поддержку в принятии решений по компромиссу Ra–VB. 

Результаты исследования. Проведённые эксперименты и моделирование на основе 

искусственной нейронной сети показали, что между скоростью резания, подачей и глубиной 

резания существуют сложные нелинейные зависимости, и влияние этих параметров на 

шероховатость поверхности (Ra), силы резания (Fc) и износ инструмента (VB) имеет 

различный характер. Классические регрессионные модели демонстрировали определённое 

соответствие, однако их точность прогнозирования была значительно ниже по сравнению с 

моделью искусственной нейронной сети. 

Предварительные результаты подтвердили, что увеличение скорости резания в 

определённом диапазоне снижает шероховатость поверхности. Это объясняется более 

стабильной работой инструмента и более чистым срезом материала режущей кромкой. 

Однако после достижения критического порога дальнейшее увеличение скорости резания 

вновь приводит к росту значений Ra. Это связывается с усилением тепловых эффектов в зоне 

резания и локальным размягчением инструмента. Построенные графики показали, что 
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зависимость между скоростью резания и шероховатостью поверхности напоминает U-

образную кривую, что подтверждается в литературе [8-10]. 

Изменения сил резания показали аналогичную тенденцию. Увеличение подачи 

приводило к росту сил, что отрицательно сказывалось на качестве поверхности. Глубина 

резания в большей степени влияла на компонент Fc, что соответствует закономерностям 

механики резания [11, 12]. 

Результаты по износу инструмента (VB) показали, что при увеличении скорости 

резания срок службы инструмента имеет тенденцию к сокращению. Модель искусственной 

нейронной сети превзошла классические модели в прогнозировании износа инструмента, 

особенно в случаях с большим количеством изменяющихся параметров, обеспечивая более 

стабильные результаты [13, 14]. 

В ходе многокритериальной оптимизации был построен фронт Парето и определены 

оптимальные рабочие окна. Диаграмма Парето показала, что возможно одновременно 

минимизировать шероховатость поверхности и увеличить срок службы инструмента, однако 

для этого требуется компромиссный подход. Технолог может выбрать наиболее подходящую 

точку в зависимости от приоритетов процесса – например, высокого качества или 

длительного срока службы инструмента. 

Преимущество модели искусственной нейронной сети проявляется не только в 

высокой точности прогнозирования, но и в применении средств интерпретации. Результаты 

анализа SHAP показали, что скорость резания является наиболее значимым параметром для 

Ra и VB, подача в большей степени влияет на шероховатость поверхности, а глубина резания 

– на силы [15]. 

В целом проведённое исследование показало, что применение традиционных 

эмпирических подходов не полностью отражает сложные реалии современного 

производства. Методы искусственного интеллекта предоставляют более надёжные, 

адаптивные и практичные решения для многокритериальной оптимизации. Однако 

существуют и определённые ограничения. В первую очередь, надёжность модели зависит от 

качества собранных данных. Кроме того, для различных комбинаций материалов и 

инструментов требуется повторное обучение модели. 

Таким образом, данное исследование доказывает, что оптимизация скорости резания с 

использованием искусственной нейронной сети позволяет получать более стабильные и 

надёжные результаты в реальном производстве. Это имеет значительную практическую 

ценность с точки зрения повышения качества продукции, увеличения срока службы 

инструмента и снижения производственных затрат. 

Заключение. Проведённое исследование показало, что оптимизация скорости резания 

при токарной обработке трубчатых деталей оказывает решающее влияние на качество и 

эффективность процесса. На основе полученных результатов сформированы следующие 

основные научные и практические выводы: 

1. Связь между скоростью резания и шероховатостью поверхности носит нелинейный 

характер. Увеличение скорости до определённого интервала улучшает показатель Ra, однако 

после критического предела шероховатость поверхности снова возрастает из-за усиления 

тепловых эффектов. Этот факт подтвердился как в экспериментальных, так и в 

прогнозируемых результатах с использованием искусственной нейронной сети. 

2. Износ инструмента (VB) резко увеличивается с ростом скорости резания. При 

низких скоростях значения VB были минимальными, а при высоких скоростях срок службы 

инструмента значительно сокращался. Это соответствует классическому закону Тейлора и 

подчёркивает важность выбора инструмента в оптимальном режиме. 

3. Сила резания (Fc) была более тесно связана с подачей и глубиной резания. 

Увеличение подачи ухудшало шероховатость поверхности, а глубина резания в основном 

вызывала рост сил. Это полностью соответствует теоретическим основам механики резания 

металлов. 
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4. Модель искусственной нейронной сети показала более высокую точность прогноза 

по сравнению с классическими регрессионными моделями. Близость между измеренными и 

прогнозируемыми значениями подтверждает эффективность модели в охвате реальных 

процессов. 

5. В результате многокритериальной оптимизации был построен фронт Парето и 

определены различные компромиссные варианты решений для технолога. Это позволяет 

выбирать оптимальные рабочие окна, обеспечивающие как высокое качество поверхности, 

так и увеличение срока службы инструмента. 

6. Анализ SHAP позволил оценить влияние параметров. Скорость резания определена 

как основной фактор для Ra и VB, подача – как главный фактор для шероховатости 

поверхности, а глубина резания – для сил резания. 
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Андатпа. Мұнай-газ жабдықтарын өндіруде жоғары дәлдіктегі токарлық өңдеу 

процесінде кесу жылдамдығын дұрыс таңдау процестің сапасы мен тиімділігін шешуші 

дәрежеде анықтайды. Кесу жылдамдығы беттің кедір-бұдырлығына ғана емес, сонымен 

қатар құралдың қызмет ету мерзіміне, кесу күштерінің тұрақтылығына және өндіріс 

шығындарының төмендеуіне де әсер етеді. Дәстүрлі эмпирикалық формулаларды қолдану 

күрделі сызықтық емес тәуелділіктерді сипаттауда шектеулерге ие.  

Бұл мақалада кесу жылдамдығын оңтайландыру үшін жасанды нейрондық желілерге 

негізделген тәсіл ұсынылады. Зерттеу барысында нақты өндірістік жағдайларға сәйкес 

келетін эксперименттік жоспар жасалды және беттің кедір-бұдырлығы (Ra) параметрлері, 

кесу күштері (Fc, Ff) және құралдың тозуы (VB) туралы мәліметтер жиналды. Алынған 

мәліметтер жасанды нейрондық желі моделімен өңделді, көп критериалды оңтайландыру 

жүргізілді және Парето компромисі негізінде тұрақты жұмыс терезелері анықталды. 

Нәтижелер жасанды нейрондық желілер классикалық регрессиялық модельдермен 

салыстырғанда дәлірек болжамдар беретінін және процестің сенімділігін арттыратынын 

көрсетті.  

Қолданыстағы әдебиеттерде анықталған кемшіліктер — тек бір критерийге назар 

аудару, модельдерді тасымалдаудың шектеулі мүмкіндіктері және сенімділік сынақтарының 

жетіспеушілігі — осы зерттеуде ішінара жойылды. Осылайша, ұсынылған тәсіл өндірістегі 

оңтайлы кесу жылдамдығын таңдау үшін теориялық және тәжірибелік жүзінде маңызды 

нәтижелерді ұсынады. 

Түйін сөздер: токарлық өңдеу, кесу жылдамдығы, жасанды нейрондық желі, беттің 

кедір-бұдырлығы, кесу күші, құралдың тозуы, көп өлшемді оңтайландыру. 
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Annotation. In the production of oil and gas equipment, the correct choice of cutting speed 

during high-precision turning crucially determines the quality and efficiency of the process. The 

cutting speed affects not only the surface roughness, but also the tool life, the stability of cutting 

forces and the reduction of production costs. The use of traditional empirical formulas has 

limitations in describing complex nonlinear dependencies.  

This article suggests an approach based on artificial neural networks to optimize cutting 
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speed. During the study, an experimental plan was developed that corresponds to real production 

conditions, and data was collected on the parameters of surface roughness (Ra), cutting forces (Fc, 

Ff) and tool wear (VB). The data obtained was processed by an artificial neural network model, a 

multi-criteria optimization was performed, and stable operating windows were determined based on 

the Pareto compromise. The results showed that artificial neural networks provide more accurate 

predictions compared to classical regression models and increase the reliability of the process.  

The shortcomings identified in the existing literature — focusing on only one criterion, 

limited model portability, and a lack of reliability tests — were partially eliminated in this study. 

Thus, the proposed approach presents both theoretically and practically significant results for 

choosing the optimal cutting speed in production. 

Keywords: turning, cutting speed, artificial neural network, surface roughness, cutting 

force, tool wear, multi-criteria optimization. 

 


