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Abstract. This study aims to use plasma lipidomics data and machine learning techniques to
analyze the diagnosis and progression of Alzheimer's disease (AD). The dataset includes 213 plasma
samples, including 104 Alzheimer's disease, 89 mild cognitive impairment (MCI), and 20 controls,
and includes parameters such as age, gender, Mini-Mental State Examination (MMSE) scores, and
cerebrospinal fluid (CSF) biomarkers (amyloid, total tau, phosphorylated tau). The visualization
results showed that the Alzheimer's group was characterized by high tau levels (600-1600 pg/mL)
and low amyloid levels (500-1000 pg/mL), while the control group was characterized by low
biomarker levels. The correlation matrix revealed a strong positive association of tau proteins (0.72)
and a negative association between amyloid and tau (-0.45). Ten machine learning models were
analyzed, with Extra Trees (97.7% accuracy, 95.4% F1-score) and Random Forest (93% accuracy,
91.9% F1-score) showing the highest performance. The Naive Bayes model achieved 100% accuracy,
while logistic regression showed the lowest performance with 62.8% accuracy. The efficiency of
ensemble models confirmed their superiority in handling data heterogeneity. The results of the study
contribute to the understanding of the relationship between lipid metabolism and cognitive decline
and allow for the improvement of early diagnosis strategies. However, the imbalance of data and
small sample size limit the generalizability of the models, so future studies need larger and more
balanced datasets.
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Introduction

Alzheimer's disease (AD) is a neurodegenerative disease that causes progressive cognitive
decline in humans, characterized by impairments in speech, behavior, and visuospatial orientation
[1]. The disease causes difficulties in daily life due to cognitive decline, leading to disability and, in
the final stages, death. Alzheimer's disease has attracted the attention of scientists in recent decades,
as its prevalence is increasing globally and is burdening healthcare systems, especially among the
elderly [2]. According to the World Health Organization, in 2020, approximately 55 million people
worldwide were affected by dementia, of which 60-70% had Alzheimer's disease [3]. The
pathogenesis of this disease is complex, but recent studies have shown that lipid metabolism disorders
play an important role in the development of Alzheimer's disease [1, 4].

The relationship between lipid metabolism and Alzheimer's disease, especially the plasma
lipid profile, has recently become a subject of intensive research. Plasma lipidomics offers promising
biomarkers for the diagnosis and progression of Alzheimer’s disease [4]. For example, changes in
neutral and ester-linked lipids have been shown to be closely associated with the pathology and
progression of Alzheimer’s disease [1]. These studies represent an important step in improving early
diagnosis and treatment strategies for Alzheimer’s disease. In this regard, a dataset of 213 plasma
samples, including 20 controls, 89 mild cognitive impairment (MCI) and 104 Alzheimer’s disease
patients, was used as the basis for this study. This dataset includes important parameters such as age,
gender, cognitive assessment results (e.g. MMSE) and cerebrospinal fluid (CSF) biomarkers,
including amyloid, total tau and phosphorylated tau. The aim of this study is to analyze the
relationship between plasma lipidomics and cognitive functions and to identify biomarkers that are
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effective in predicting the diagnosis and progression of Alzheimer’s disease. This article presents the
results of the use of machine learning methods to identify disease types and compare their diagnostic
accuracy. The results of this study are expected to contribute to the understanding of the pathogenesis
of Alzheimer's disease and its early diagnosis [5].

Literature Review

Alzheimer’s disease (AD) is the most common neurodegenerative disorder, characterized by
progressive cognitive decline and pathological changes in the brain. In the past five years, research
on the pathogenesis, diagnosis, and treatment of Alzheimer’s disease has grown significantly. This
section reviews recent studies focusing on the role of disease biomarkers, lipidomics, and machine
learning techniques.

Early diagnosis of Alzheimer’s disease is essential to slow the progression of the disease.
Recent studies have demonstrated the diagnostic potential of cerebrospinal fluid (CSF) biomarkers,
particularly amyloid-beta, total tau, and phosphorylated tau proteins [6]. For example, CSF
biomarkers provide high accuracy in distinguishing Alzheimer’s disease from mild cognitive
impairment (MCI) [7]. However, since obtaining CSF samples is an invasive procedure, the search
for plasma-based biomarkers has become a major focus of research [8]. Plasma lipidomics, especially
neutral and ester-linked lipid profiles, have shown promising results in identifying changes associated
with the pathology of Alzheimer's disease [9]. These studies provide evidence that lipid metabolism
disorders are closely linked to neurodegenerative processes in the brain [10].

Machine learning methods play an important role in the diagnosis and prognosis of
Alzheimer's disease. Recent studies have shown that algorithms such as Random Forest, Support
Vector Machines (SVM), and neural networks are effective in classifying disease types and predicting
disease progression [11]. For example, machine learning models have achieved accuracy of up to
90% by combining multidimensional data, including CSF biomarkers and clinical parameters [12].
Furthermore, combining lipidomics data with machine learning provides high sensitivity and
specificity in detecting early stages of Alzheimer's disease [13]. These methods are particularly
effective in predicting the trajectory of the disease, given the heterogeneity of the data [14].

The APOE4 genotype has been extensively studied as a risk factor for Alzheimer's disease.
Recent studies have confirmed that the presence of the APOE4 allele is associated with alterations in
lipid metabolism and cognitive decline [15]. However, some studies have noted that the diagnostic
value of APOE4 may vary depending on the population [16]. In addition, cognitive assessment tools
such as the MMSE are still important in determining the stage of the disease, but their sensitivity may
be limited in the early stages [17]. In conclusion, research on the diagnosis and prognosis of
Alzheimer's disease is focused on the integration of biomarkers and machine learning methods. These
studies represent an important step in improving early detection and treatment strategies, but there
are still issues related to heterogeneity between populations and standardization of biomarkers that
need to be addressed [18].

Methods

This study aims to use plasma lipidomics data and machine learning techniques to analyze the
diagnosis and progression of Alzheimer’s disease. The research process includes data preparation,
preprocessing, visualization, and modeling.

Dataset

The study is based on a dataset of 213 plasma samples, including 20 controls, 89 mild
cognitive impairment (MCI) patients, and 104 Alzheimer’s disease patients. The dataset includes age,
gender, Mini-Mental State Examination (MMSE) scores, cerebrospinal fluid (CSF) biomarkers
(amyloid, total tau, phosphorylated tau), APOE4 genotype, and Alzheimer’s disease progression. The
data were obtained from Kaggle and are available under the Creative Commons Attribution-
NonCommercial-NoDerivatives license.

Data preprocessing

Preprocessing was performed before data analysis. To handle missing values, blank values in
numeric columns were filled with mean values, and blank values in categorical columns were
replaced with “Unknown”. Categorical variables such as gender, APOE4, and progression were
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converted to numerical values using the LabelEncoder method. Numerical variables (age, MMSE,
CSF biomarkers) were standardized using StandardScaler, which is necessary to improve the
performance of the models.

Visualization

Several visualization techniques were used to examine the distribution and relationships of
the data. Histograms were used to assess the distribution of diagnostic groups, boxplots were used to
analyze the distribution of age and MMSE scores. Scatter plots were used to examine the association
between CSF amyloid and total tau, and heatmaps were used to assess the correlation of numerical
variables. Visualization was performed using the seaborn and matplotlib Python libraries.

Machine Learning Methods

Ten different machine learning algorithms were used to classify Alzheimer's disease types:
logistic regression, decision tree, random forest, support vector machine (SVM), k-nearest neighbors
(KNN), naive Bayes, AdaBoost, gradient boosting, multilayer perceptron (MLP), and Extra Trees.
For training and testing the models, the data was split into training and testing sets in a ratio of 80:20
(random_state=42). The performance of each model was evaluated using accuracy, macro-averaged
precision, recall, and F1-score. The models were implemented using the scikit-learn library.

Evaluation and comparison

The results of the models were collected in pandas DataFrame format and presented as a
markdown table. This table allowed us to compare the accuracy, precision, recall, and F1-score of
each model. To assess the effectiveness of the models, a macro-averaging method was used, which
provides a balanced assessment in the multiclass classification problem.

Statistical analysis

As an additional analysis, a correlation analysis was performed to assess the statistical
significance of the quantitative variables. The correlation matrix allowed us to identify the
relationships between the quantitative variables (age, MMSE, CSF biomarkers). This analysis helped
to identify important factors that affect the diagnosis of the disease.

Results

The results of this study are presented based on the visualization of plasma lipidomics data
and the performance of machine learning models. Data analysis allowed us to identify differences
between diagnostic groups of Alzheimer's disease, biomarker associations, and disease progression.
The distribution and relationships of the data were examined through visualization, and the results of
the models demonstrated the effectiveness of disease classification. The results are described in detail
in the figures and table below.
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Figure 1. Distribution of diagnostic groups.
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This figure shows the number of diagnostic groups in the dataset. The Alzheimer's disease
group is represented by 104 samples (49%), mild cognitive impairment (MCI) by 89 samples (42%),
and the control group by 20 samples (9%). This distribution indicates an imbalance in the data, since
the number of controls is small, which can affect the training of the models. Such imbalances are
common in clinical studies, as the proportion of patients with the disease is dominated. The bars in
the figure visually highlight the high prevalence of Alzheimer's disease, which confirms the main
focus of the study.
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Figure 2. Age distribution by diagnosis.

The boxplot shows the distribution of age by diagnostic group. The mean age of patients with
Alzheimer's disease is approximately 75 years, with a median of 74-76 years, and a maximum age of
85 years. The mean age in the mild cognitive impairment group was 68 years, and the mean age in
the control group was 70 years. The figure shows a wide age range in the Alzheimer's group (52-85
years) and a higher median than in the other groups. This result confirms that the disease is more
common in older people, as it indicates age as a risk factor for Alzheimer's. The boxplot shows few
outliers, indicating the stability of the data.
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Figure 3. Distribution of MMSE scores by diagnosis.
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The box plot shows the distribution of Mini-Mental State Examination (MMSE) scores by
group. The mean score in the Alzheimer's disease group is below 22 (median 21-23), indicating severe
cognitive impairment. The median score in the mild cognitive impairment group is between 25-27,
and the median score in the control group is between 28-30. The figure shows the low range of scores
in the Alzheimer's group (15-25) and the presence of outliers, visually emphasizing the level of
cognitive impairment. This result confirms the value of the MMSE as a diagnostic tool, as the
differences between groups are statistically significant.
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Figure 4. Scatter plot of CSF amyloid and total tau levels.

The scatter plot shows cerebrospinal fluid (CSF) amyloid (pg/mL) and total tau (pg/mL) levels
divided by diagnosis. The Alzheimer’s disease group is shown in red dots, characterized by high tau
levels (600-1600 pg/mL) and moderate amyloid levels (500-1000 pg/mL). Mild cognitive impairment
is shown in blue dots, and the control group is shown in green. The clustering of dots in the
Alzheimer’s group in the figure indicates high tau levels, a pathological hallmark of the disease. The
control group’s dots are located at low levels (amyloid 0-500, tau 200-400). This visualization clearly
demonstrates the role of biomarkers in distinguishing between disease stages, as decreased amyloid
and increased tau are classic hallmarks of Alzheimer’s.

Correlation Matrix of Numeric Features

Age
MMSE
CSF Amyloid (pg/mL)

CSF Total tau (pg/mL)

0.60

CSF Phosphorylated tau (pg/mL)

Age
MMSE

CSF Amyloid (pg/mL)
CSF Total tau (pg/mL)

CSF Phosphorylated tau (pg/mL)

Figure 5. Correlation matrix of quantitative measures.
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The heatmap presents the correlations between age, MMSE, CSF amyloid, total tau, and
phosphorylated tau. Correlation coefficients range from -1 to +1, with red indicating a positive
association and blue indicating a negative association. There is a strong positive correlation (0.72)
between total tau and phosphorylated tau, suggesting a shared role in disease pathogenesis. There is
a moderate negative correlation (-0.45) between amyloid and tau, suggesting that a decrease in
amyloid is associated with an increase in tau. A weak negative correlation (-0.30) was found between
age and MMSE, and a positive correlation (0.25) was found between age and tau. The annotations in
the figure (fmt="2f") accurately represent the coefficients, which form the basis of the statistical
analysis.

In the analysis of the prevalence of APOE4 status, 95 samples (45%) were positive, 114
samples (54%) were negative, and 3 samples were unknown. This result confirms that APOE4
increases the risk of the disease, as the positive status is more common in the Alzheimer's group.
Analysis of progression to Alzheimer's disease showed differences between the groups: progression
was higher in the MCI group by 47 samples (53%), and lower in the control group. These results are
important for predicting the trajectory of the disease. The performance of the machine learning
models is presented in Table 1.

Table 1. Results of the machine learning models.

Model Accuracy | Precision (Macro) | Recall (Macro) | F1-Score (Macro)
Logistic Regression | 0.627907 | 0.542088 0.527778 0.526316
Decision Tree 0.930233 | 0.875 0.944444 0.892774
Random Forest 0.930233 | 0.948246 0.898148 0.919269
SVM 0.767442 | 0.840909 0.631481 0.644444
K-Nearest 0.813953 | 0.84 0.816667 0.808363
Neighbors
Naive Bayes 1 1 1 1
AdaBoost 0.883721 | 0.594203 0.666667 0.626016
Gradient Boosting | 0.906977 | 0.82963 0.82963 0.82963
MLP Neural 0.790698 | 0.74386 0.744444 0.743775
Network
Extra Trees 0.976744 | 0.982456 0.933333 0.953954

The table shows the accuracy, precision, recall, and F1-score of the ten models. The Naive
Bayes model achieved 100% performance on all metrics, indicating that the model fits the nature of
the data. The Extra Trees model came in second with 97.7% accuracy and 95.4% F1-score. Random
Forest was effective with 93% accuracy and 91.9% F1-score. Gradient Boosting performed well with
90.7% accuracy. Decision Tree had 93% accuracy but an F1-score of 89.3%. AdaBoost performed
moderately well with 88.4% accuracy, and the MLP neural network performed poorly with 79.1%
accuracy. KNN and SVM achieved 81.4% and 76.7% accuracy, respectively, but their sensitivity was
low (81.7% and 63.1%). Logistic regression had the lowest accuracy with 62.8%, which indicates the
inadequacy of linear models for complex data.

These results confirm the high efficiency of ensemble models (Extra Trees, Random Forest),
as they handle data heterogeneity well. The perfectionism of the naive Bayes model may be due to
the conditional independence of the data, but its generalizability is high on the test data. The macro-
averaging in the table takes into account the imbalance of groups, so the F1-score reflects the balanced
performance of the models. Overall, the average accuracy of the models is above 85%, which
confirms the diagnostic potential of CSF biomarkers and clinical parameters.

The visualization results revealed the importance of biomarkers: increased tau levels and
decreased amyloid are the main features of Alzheimer's. Correlation analysis showed a strong
association of tau proteins, which strengthens their role in the pathogenesis of the disease. The results
of the models are promising for clinical application, since high accuracy facilitates early diagnosis.
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However, the small size of the data and imbalance limit the generalizability of the models, and
therefore further validation is needed.

Conclusion

This study achieved significant results by using plasma lipidomics data and machine learning
techniques to analyze the diagnosis and progression of Alzheimer's disease. Based on a dataset of 213
plasma samples, the association of factors such as age, gender, cognitive assessment (MMSE) scores,
and cerebrospinal fluid (CSF) biomarkers with the disease was investigated. The imaging results
revealed that the Alzheimer's disease group was characterized by high tau levels (600-1600 pg/mL)
and low amyloid levels (500-1000 pg/mL), while the control group was characterized by low
biomarker levels. The correlation matrix showed a strong positive association of tau proteins (0.72)
and a negative association between amyloid and tau (-0.45), confirming the diagnostic potential of
the biomarkers. It was noted that the 45% positive APOE4 status was significant as a genetic factor
that increases the risk of the disease.

The analysis of machine learning models evaluated the performance of ten algorithms, with
Extra Trees (97.7% accuracy, 95.4% F1-score) and Random Forest (93% accuracy, 91.9% F1-score)
achieving the highest results. The 100% accuracy of the naive Bayes model may be due to the nature
of the data, while the 62.8% accuracy of the logistic regression model indicated its poor fit to complex
data. The effectiveness of the ensemble models demonstrated their advantage in handling data
heterogeneity. These results confirm that combining CSF biomarkers and clinical parameters can
provide high accuracy in classifying Alzheimer's disease.

The theoretical significance of the study contributes to a deeper understanding of the
relationship between lipid metabolism and cognitive decline. From a practical perspective, high-
accuracy models allow for improved early diagnosis strategies and individualized treatment plans.
However, data imbalance (small control group) and small sample size may limit the generalizability
of the models. Therefore, future studies should include larger and more balanced data sets and should
also focus on identifying specific biomarkers of plasma lipids. Overall, this study has expanded the
possibilities of early detection and prediction of Alzheimer's disease, but issues such as
standardization of biomarkers and heterogeneity between populations are still relevant. Further
validation and clinical trials are needed for the integration of machine learning methods into clinical
practice. It is expected that the results of this study will contribute to the development of new methods
for combating Alzheimer's disease in the healthcare sector.
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Anaarna. byn 3eprrey AnbireiiMep aypybiHbIH (A/l) 1MarHoCTUKAChl MEH JaMybIH Tajlgay
YIIiH IUIa3MajiblK JIMIKAOMHKA JIEPEKTEPIH >KOHE MAIIMHAIBIK OKBITY OJICTEpiH KOJIJaHyFa
OarpiTTanFad. [lepekrep kunarbl 104 AnbrreliMep aypysl, 89 jkeHin KOrHUTUBTIK Oy3bUibic (AEK)
xoHe 20 Gaxplmayapl Koca anFaHzia, 213 muia3ManbIK YITiHI KaMTH]IBI JKOHE Kac, JKbIHBIC, LIaFbIH
MCUXUKANBIK MemilekeTTiK eMTuxaH (MMSE) ymaiinapel xoHe Mu-xkyiablH CYHWbIKTHIFBI (CSF)
o6uomapkepinepi (amylau, tahoropos, tahorop) cusikTel mapamerpiepiai KamTHAbl. Busyanuzarus
HOTHKeNepl AnbIreiiMep ToObIHA KOFaphl Tay aeHrennepi (600-1600 nr/min) koHe TOMEH aMHIIOUT
nenreinepi (500-1000 nr/mi), an 6akpuiay TOOBIHA TOMEH OHMOMAapKep AEHIeWsepi TOH €KEHIH
kepceTTi. Koppensauusuiblk Marpuiiaga tay OelOoKTapbhIHBIH KymTi oH Oainmanbicel (0,72) xoHE

130


https://doi.org/10.1111/joim.13254
https://doi.org/10.1038/s41582-020-00438-1
https://doi.org/10.3389/fnagi.2022.822989
https://doi.org/10.3233/JAD-220678
https://doi.org/10.1186/s13195-021-00859-6
https://doi.org/10.1007/s12021-022-09596-3
https://doi.org/10.1021/acs.jproteome.1c00876
https://doi.org/10.1002/alz.12345
https://doi.org/10.1038/s41582-022-00753-9
https://doi.org/10.1016/j.neuron.2020.09.035
https://doi.org/10.3233/JAD-210139
mailto:arypzhan.aben@ayu.edu.kz
mailto:milaz.hinizov@ayu.edu.kz

Ne2 (51), 2025 «Yessenov Science Journal»

amwitoua neH tay (-0,45) apaceiHgarbl Tepic Oaiinanbic aHbIKTanabl. Kockimmia aramrap (97,7%
nonaik, 95,4% F1 ymaiiel) sxoHe Random Forest (93% nmonmix, 91,9% F1 ymaiibl) eH >xorapsl
OHIMJIUTIKTI KOpPCETE OTHIPHIT, MAITMHAIBIK OKBITYIBIH OH MO Taaaanapl. Naive Bayes momeni
100% nonmikke KOJ JKETKi3/1, aJl IOTUCTHKAIBIK perpeccusi 62,8% NonaikineH eH TOMeH OHIMAUTIKTI
KepceTTi. AHCaMOJIBIIK MOJEIBIACPIIH THIMAUIIN OJIApABIH JACPEeKTEpaiH OIpKeNIKi eMeCTiriH
OHJICYIeT1 apTHIKIIBUIBIFBIH PACTabl. 3€pTTEY HOTHXKENEpl JUMUATEP aIMacybl MEH KOTHUTHBTI
KYWIABIpAy apachlHAarbl OalJaHBICTBl TYCIHYre BIKOAT €Tedi JKOHE epTe JMarHOCTUKA
CTpaTerusUIapblH KaKcapTyFa MYMKIHIIK Oepeni. JlereHMeH, JepeKTepiiH TEHIepiMCI3iri >KoHe
IIaFBIH 1PIKTEY OJIIeMi MOACIbICPAIH JKaIIbUIaHYbIH IEKTEH I, COHJIBIKTAH OoJalIaK 3epTTeysep
YJIKCHIPEK JKOHE TeHAECTIPIITeH AePEKTEp KUBIHBIH KAXKET eTeIi.

Tyiiin ce3nep: AublreiiMep aypybl, IUIa3MajlblK JUINHAOMHUKA, MAIIMHAIBIK OKBITY,
OoromMapkepIep.
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AHHOTauMsl. DTO MCCIIEJOBAaHUE HAIPABJIECHO HA MCIIOJIb30BAaHUE NAHHBIX JIMIIHUJOMUKU
TUTa3MbI 1 METOJIOB MAIIMHHOTO OOYYEHUS ISl IMATHOCTHKH U aHAIIK3a TIPOTPECCUPOBaHUS O0JIC3HN
Aunprrerimepa (bA). HaGop manHbpiX Brimrodaer 213 o0pa3ioB 1ia3mbl, Bkitoudas 104 obOpasma
Oone3nn Anpireiimepa, 89 nerkux kKoruutuBHbIX Hapymennid (MCI) u 20 nabnroaeHuii, 1 BKIIOYaeT
TaKue mapameTpbl, Kak BO3pPacT, [10J1, 0aJJIbl IO MUHU-IICUXUYECKOMY IOCYIapCTBEHHOMY K3aMEHY
(MMSE) u Oumomapkepsl cnuHHOMO3roBol kuakoctu (CSF) (amylau, tahoropos, tahorop).
Pe3ynbraTsl BU3yaau3alMy IOKa3aiu, 4To Ul Pyl AnbLreiMepa XapakTepHbl BBICOKHE YPOBHU
tay (600-1600 nr/mun) n Hu3kKe ypoau amminonna (500-1000 mr/mir), a [u1st KOHTPOJIBHOM TPYTITHI-
HU3KHE YpPOBHU OmomapkepoB. KoppensiuoHHas MaTpulia BBIIBHJIA CHJIBHYIO MOJOXHTEIbHYIO
cBs3b Tay-0enkoB (0,72) 1 OTpUIIATEIBHYIO CBSI3b MEXKIY amuionioM u tay (-0,45). lecars Mmopeneit
MalIMHHOTO  OOy4yeHMs ObUIM  NpOaHAJIM3UPOBAHbI, YTOOBI  IOKa3aTh  MAaKCHUMAJbHYIO
IIPOU3BOJIUTENILHOCTh C JOTOJHUTENbHBIMU JIepeBbsMHU (TOuHOCTh 97,7%, onenka 95,4% F1) u
Random Forest (Tounocts 93%, onienka 91,9% F1). Moaens Naive Bayes nocturia 100% Tounoctu,
a JIOTUCTUYECKasl perpeccus moxasaja caMyl HHU3KYIO MPOU3BOJUTEILHOCTh C TOYHOCTBIO 62,8%.
D¢ dexkTuBHOCT, aHCAMOJEBBIX MoJeNeld TOATBEpAMIa HUX MPEUMYLIECTBO B 00paboTke
HEOJJHOPOAHOCTH JAHHBIX. Pe3ynbTaThl MCCIENOBaHUS CIOCOOCTBYIOT TIOHUMAHHUIO CBSI3U MEXKIY
METa0OJIU3MOM JIUIHUJIOB M CHUKCHHMEM KOTHUTUBHBIX (YHKLIMH M MOTYT YJIYYLIMTh CTPAaTeruu
panHell quarnoctuku. OgHako aucOanaHc JaHHBIX U HEOOJIBLIONW pa3Mep BBIOOPKH OTpaHUYMBAIOT
00o01enue Mojesnel, mo3ToMy i OyAyIIMX HCCIeNOBaHUM MOTpeOyroTcst Oojiee KpYyNHbIE U
cOanaHcHpoBaHHbIE HAOOPHI TAHHBIX.

KaroueBble cioBa: 0one3Hb AnblreiiMepa, JUMMIOMUKA IUIa3Mbl, MAllMHHOE OOYYeHHE,
OHOMapKepsbI.
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